Разгон памяти, против разгона ядер

Содержание

Разгон памяти, против разгона ядер

В прошлой части мы с вами смотрели на то, как стоит для повседневной работы разгонять современные процессоры, и получили прирост на i9 9900k от 2 до 12% в зависимости от задачи повысив TDP с 95 до 145 Ватт.

Разгон памяти, против разгона ядер

И закончил я видео сказав, что в тестах я использовал довольно посредственные планки памяти. У них стоял XMP профиль на 3 ГГц не с супер низкими таймингами и тогда же я пообещал, что мы посмотрим — что важнее разгон памяти или разгон ядер.

Само собой в реальности, если хочется увеличить производительность, то надо делать и то и другое.

Но «что будет вносить больший вклад в созданных условиях» — большой вопрос.

Ответить на этот вопрос нам поможет свеженький комплект памяти 2 по 8 Гигов, которые мне предоставила компания патриот.

Разгон памяти, против разгона ядер

В память записано два XMP профиля, на 4400 и на 4266 МГц.

Разгон памяти, против разгона ядер

Вообще выбирая себе частотные планки стоит понимать, что не любой процессор может потянуть выше 4 ГГц по памяти, кроме того и материнская плата может с этим не справиться. И 4400 могут быть проблемой для всех процессоров кроме двух последних линеек райзенов и то уже с делителем на инфинити фабрик, i9 девятого поколения от intel. а так же процессоров десятого поколения intel. В общем — для этого на плакнах есть профиль на 4266 МГц, который запуститься и на процессорах и материнских платах попроще.

Так же и не любые платы смогут обеспечить стабильную передачу сигнала и автоматический подбор субтаймингов на высокие частоты. У меня в тесте ASUS maximus gene 11. Но покупая частотные планки стоит на сайтах производителей ещё убедиться, что производитель памяти считает вашу плату поддерживаемой для этой памяти.

В общем — на всякий случай я предупредил вас, что частотный XMP профиль — это не гарантия того что он у вас заработает. Но частотный XMP профиль — это гарантия того, что если другие компоненты системы потянут, то память на этой частоте запуститься.

Во второй части видео мы посмотрим на прирост от разгона памяти в сравнении с простым комплектом на 3 ГГц.

За счёт чего происходит разгон памяти?

Но для начала всё же разберемся как вообще разгонять память, естественно, кроме как используя XMP профиль.

Это видео не будет гайдом по разгону. Не думаю, что у меня на это есть достаточно опыта, чтобы делать гайды. Да и в общем-то никаких тайн и секретов нет. Более подробнее практический опыт описан в теме на форуме оверклокерс.ру.

Но всё же общую суть и физику самого процесса я расскажу.

У нас есть глобально три устройства, которые отвечают за реализацию разгона.

Первый — это сама оперативная память.

Второй — контроллер памяти, который в современных процессорах встроен в сам центральный процессор.

Кроме того между этими устройствами есть связи, проходящие через материнскую плату.

Разгон памяти, против разгона ядер

И у памяти есть два глобальных параметра.

Первый — это частота, с которой память может работа.

Разгон памяти, против разгона ядер

Второй — это скорость исполнения команд самой памяти.

Разгон памяти, против разгона ядер

Частоту могут ограничивать все три компонента системы, то есть и сама память и контроллер процессора и не идеальность материнской платы.

Разгон памяти, против разгона ядер

А вот скорость обработки команд может ограничивать уже только сама память.

Разгон памяти, против разгона ядер

Коротко расскажу, как это всё работает, чтобы вы понимали суть того что мы будем делать при разгоне.

Что такое тайминги памяти, зачем они нужны и какие есть ограничения для их снижения?

Представьте, что вы — это оперативная память. Сами данные хранятся в огромных стеллажах. В этих стеллажах есть полки. На каждой полке много разных книг, в книгах есть страницы, и на этих страницах есть строки. Ваша работа — это получить от начальника информацию о том, что за часть данных нужна, далее определить в каком стеллаже, на какой полке, в какой книге и на какой строке эти данные находятся. Затем подойти к нужному стеллажу и открыть его, там открыть нужную полку, вытащить из этой полки нужную книгу, открыть книгу на нужной странице, найти нужную строку, прочитать её, вернуться к начальнику и сказать ему, что там было записано. Ну либо наоборот — начальник требует записать какую-то информацию, вы должны её записать в свободное место и занести в журнал расположение этой информации, чтобы потом, когда эти данные надо будет прочитать вы могли по этому журналу понять в каком месте эти данные записаны.

В общем — всё просто.

Но сложность в том, что у вас нет собственного мозга для того чтобы делать все действия самостоятельно и слаженно. То есть каждую задачу вы выполняете поэтапно только по требованию начальника. То есть дошли до стеллажа, ждёте команду на открытие этого стеллажа, открыли стеллаж, ждёте команду на открытие полки и т.д. В общем — работник вы так себе.

Но интереснее то, что и начальник не знает успели вы сделать предыдущий этап — или не успели.

То есть вы могли ещё не дойти до нужного стеллажа, а начальник уже скажет вам, что надо открыть определённую полку. Вы, идя к стеллажу, делаете в воздухе движения руками, как будто вы открываете полку на стеллаже, потом уже когда подошли к стеллажу, вам дают команду открыть нужную книгу, вы пытаетесь взять книгу через закрытую полку и т.д. Естественно в таком случае запись или чтение произвести не удаться.

Иными словами — для нормальной работы начальнику нужно заранее знать сколько времени у вас уходит на то, чтобы подойти к стеллажу, открыть полку, и т.д. И при подачи вам команд — засекать время перед подачей новой команды так, чтобы вы и долго не простаивали и так, чтобы вы успевали выполнить прошлую команду, то есть в идеале надо практически мгновенно после выполнения прошлой команды получали следующую.

В общем-то разгон памяти и заключается в том, чтобы организовать работу памяти так, чтобы все простои между подачей команд памяти сделать такими, чтобы минимизировать простои.

У оперативной памяти внутренняя иерархия по сути такая же как и в моём примере.

И памяти надо по очереди активировать на пути к нужным данным все эти уровни по очереди один за другим. И на каждом из уровней активация занимает какое-то время для прохождения физических процессов, в основном это накопление нужного заряда до рабочих значений напряжений. То есть в моем примере вы физически ходили, а в реальности — это накопление необходимого заряда до рабочих значений. Из-за которых между командами нужно отступать временные отрезки.

Разгон памяти, против разгона ядер Разгон памяти, против разгона ядер

А время между подачей определённых команд называется таймингами.

Разгон памяти, против разгона ядер

Правда тайминги эти указываются не в секундах, а вернее в наносекундах, а указываются они в количестве тактов.

То есть, допустим. на частоте выдачи команд 1 МГц — тайминг “единица” — это 1 миллионная секунды.

Разгон памяти, против разгона ядер Разгон памяти, против разгона ядер

тайминг — “двойка” — это две миллионные секунды.

А допустим на частоте 2 МГц тайминг “единица”, — это половина миллионной секунды, а тайминг двойка — это одна миллионная секунды.

Разгон памяти, против разгона ядер

То есть на частоте 1 МГц тайминг единица — равен таймингу двойка на частоте 2 МГц.

Собственно — разгон памяти без изменения напряжения на память не позволяет ускорять переходные процессы в памяти.

Поэтому с ростом частоты — приходится пропорционально увеличивать и задержки, то есть тайминги.

И, допустим, если вы подобрали минимальные тайминги на частоту 2 ГГц, то в идеальном мире вы можете взять частоту 4 ГГц просто увеличив тайминги в два раза.

Но увеличив частоту — мы получаем два бонуса — первый бонус заключается в том, что память, на самом деле, работает параллельно с несколькими банками и ранками, то есть может не снимать питание с определённых участков, так что часть команд можно будет пропускать при обращениях к недавно задействованным элементам, и тут уже важнее становиться теоретическая возможность каждый такт передавать целевую информацию. И если частота выросла в два раза — то можно передать целевой информации в два раза больше. В идеальном мире, конечно, на практике — задержки и сложная иерархия памяти такое не позволяет реализовывать в полной мере.

А второй бонус — что у нас снижается дискретизация времени между соседними значениями тайминга.

Допустим если на частоте 1 МГц между таймингом 1 и 2 разница 1 миллионная секунды, то на частоте 2 МГц — разница между таймингом 1 и 2 — половина миллионной секунды.

И если переходной процесс занимал в реальности полторы миллионных секунды, то на частоте 1 МГц нужен будет тайминг — 2, потому что с единицей работать не будет, тогда как на 2 МГц — нужен будет тайминг 3, который и даст необходимые для ожидания полторы миллисекунды.

Разгон памяти, против разгона ядер

То есть из-за увеличения разрешающей способности таймингов — можно ближе подобраться к минимальному времени рабочих задержек.

То есть выжить все соки из скорости памяти более качественно.

На практике всё, конечно, не так радужно. Память при приближении к её предельным рабочим частотам перестаёт быть на 100% отзывчивой, и к максимальной частоте — реальные тайминги, выраженные в наносекундах начинают уже увеличиваться, то есть увеличение таймингов к частоте перестаёт быть зависимыми.

И задача разгона — найти ту частоту — в которой эта зависимость ещё сохраняется и уже тонко подстроить все тайминги так, чтобы между командами память не простаивала более, чем нужно для протекания переходных процессов.

Ну, и, конечно, переходные процессы можно ускорить.

Исходя их природы этих процессов — то есть процессов зарядки и разрядки — очевидно, что увеличив напряжение питания — эти процессы начинают протекать быстрее.

Разгон памяти, против разгона ядер

То есть увеличивая напряжения — можно добиться того, что память начнёт нормально работать на меньших значениях таймингов при той же частоте.

Алгоритм действий, который я рекомендую для разгона памяти

В общем — подводя итоги по тому что надо сделать для разгона.

Первое — это изначально выбрать напряжение для памяти. Напряжение это зависит от радиаторов памяти и ваших собственных ограничений по тому сколько вы готовы набрасывать.

У меня память с толстыми радиаторами и оребрением, которое позволяет увеличить площадь теплоотвода, плюс довольно холодная 20нм память от Samsung. И для этих планок я выбрал безопасным напряжение 1,52 Вольта. При которых память не будет у меня вне корпуса греться выше 50 градусов. В корпусе, это было бы несколько выше, но в целом — до 60-65 градусов на чипах — память ещё не начинает терять в скорости переходных процессов. Но надо помнить, что с ростом температуры — потери стабильности есть, так что на планках под приличный разгон — радиаторы нужны не только для красоты. Тут радиаторы достаточно эффективные для напряжений выше рекомендуемых.

Но ставить сразу то напряжение, которые вы хотите получить я не рекомендую. Так например я в процессе разгона ставил 1,5 Вольта, чтобы потом чуть-чуть набросить напряжение для стабильности.

Если у вас горячие чипы или тонкие радиаторы — то ваш предел по напряжению будет на DDR4 между 1,35 и 1,4 Вольта.

Далее задача — на любой частоте подобрать основные тайминги, оставив субтайминги на значении авто (на высоких частотах памяти материснкие платы могут ставить «авто» не верные значения, так что этот метод для типичных частот для вашей платформы). Понятное дело, что чем ближе будет частота к будущей целевой, тем быстрее будет пройден весь разгон.. Подбор основных таймингов довольно простое занятие. Снижаете их по одному пока снижение каждого из них не приведёт к тому что в программе test Mem не начнут возникать ошибки. И постепенно увеличиваете частоту, меняя тайминги пропорционально частоте. Это можно пропорциями считать и вручную, можно и в икселе например. Опять же — в теме на ру оверах есть в шапке темы ссылки на экселевские файлы, где есть пересчитывалка таймингов при смене частоты. И так увеличиваете частоту пока линейное приращение таймингов к росту частоты продолжает работать. Как только линейное приращение работать перестаёт — значит вы достигли той частоты, на которой лучше всего будет показывать себя память и именно на ней следует уже вручную крутить остальные тайминги и субтайминги.

Касаемо intel. На процессорах 6 и 7 поколения надо уже с частоты памяти 3700-3800 МГц задавать два дополнительных напряжения в ручную. Это напряжение — на контроллер памяти, оно же Vccio, то есть ту штуку, которая отвечает за передачу команд памяти и отправку и принятие данных, а так же напряжение на системный агент (SA), это внеядерная часть процессора, в которую входит в том числе и контроллер памяти.

На частотах ниже 4 ГГц обычно эти напряжения не будут превышать 1,2 Вольта, и как правило это чуть выше стоковых 1,05 Вольта бывает, и надо их задавать вручную чтобы материнские платы не задирали эти напряжения к полутора вольтам. В общем-то активируя и высокочастотные XMP профили тоже стоит смотреть на то, что материнские платы набрасывают на агент и контроллер памяти.

С райзенами — тут я, к сожалению, опыта большого не имею, так как последний процессор у меня был 2400 G, где памятью удалось очень сильно поднять производительность встройки.

Разгон памяти, против разгона ядер

Но было это давно. Реалии настройки плат под современные райзены, смотрите в тематических темах или других видео в ютубе.

Вдобавок надо помнить и то, что на райзенах с частоты 3800 МГц включается делитель на инфинити фабрик и в целом — подбирать надо будет субтайминги именно на частоте 3800 МГц или как обещают для 5 тысячных разйенов — 4 ГГц.

Разгон памяти, против разгона ядер

На intel же проблемы с контроллером память начинаются, в зависимости от поколений и удачности конкретного экземпляра процессора на частотах от 4 до 4,5 ГГц. У меня процессор не самый удачный в части контроллера и мне, например, для 4,4 ГГц нужно напряжение уже почти 1,3 Вольта на контроллер, что многовато. Строго не рекомендуется установка напряжений на эти два компонента выше 1,35 Вольта.

Но в любом случае — предельно низкое напряжение контроллера и агента ставить надо уже после разгона, то есть в процессе разгона — выставлять надо избыточные значения этих напряжений чтобы точно ограничивать разгон не контроллером процессора, а самой памятью.

И, что касается, программы тест мем, она контролер нагружает очень слабо. То есть недостаток по напряжению на контроллер и агент эта программа надёжно оттестировать не может.

Что касается субтаймингов. Тут сложность в том, что это значения друг от друга зависимые. То есть нельзя снижать их по одному по очереди, как основные тайминги. Надо применять сразу целый пакет настроек. То есть менять сразу много.

Для райзенов есть программа райзен DRAM калькулятор, где собраны уже подходящие конфигурации под разные ревизии памяти, от которых и можно будет начинать разгон, для Intel есть экселевские считалки субтаймингов. Либо вы можете просто в самой теме шариться, пока не найдёте скрины человека с памятью, как у вас и с основными таймингами похожими на те, что смогла выжать ваша память. И просто содрать значения субтаймингов с чужого скриншота. Собственно — тема со скринами на ру овере и результатами — для того там и нужна.

В этом деле мне лично вспоминается таблица изотопов химических элементов в которой есть так называемый остров стабильности, для которого предсказано существование новых химических элементов.

Разгон памяти, против разгона ядер

Так вот — используя программы или таблицы для расчётов субтаймингов ваша задача попасть в этот остров стабильности для вашей памяти.

И как только вы в этот остров стабильности попали начинать снижать субтайминги вручную контролируя нормальную работу памяти не только по тест мему, но и используя тест скорости памяти в AIDA64 и я ещё использую тест производительности в Win-rar, он очень чувствителен к задержкам памяти. В теории — чем ниже субтайминги — тем лучше. Но в целом — иногда возникают какие-то конфликтные сочетания субтаймингов, так как они друг от друга зависимые и скорость работы памяти падает без потери стабильности.

Вообще менять вручную все субтайминги и не надо.

Для начала — половина субтаймингов — это ожидания для переключения между планками памяти и между ранками памяти. Это субтайминги с буквами DD и DR в названии.

Разгон памяти, против разгона ядер Нажмите для увеличения

Допустим, если у вас по одной планке на канал и сами планки одноранковые, то в эти субтайминги можно ставить что угодно. Можете хоть ноль, хоть своё любимое число. На работу компьютера это влиять никак не будет. Естественно можно оставить и на авто.

И процесс разгона памяти — очень приятен на хороших платах, которые не тупят когда виснут, а при поиске предела — синьки, и стопорение на инициализации компьютера при перезагрузках будут частыми гостями.

Поэтому после каждого изменения надо делать тесты стабильности, и постоянно сохранять текущий стабильный профиль разгона памяти.

Если нет планов получить, так скажем, последние пол процента производительности, то из субтаймингов на intel надо менять только эти: tRRDL tRRDS tRFC tREFI tWR tRTP tFAW. При этом не все являются зависимыми, так что, например, tRFC и tREFI (единственный в котором «больше-лучше») можно менять так же произвольно как и основные тайминги просто до сохранения стабильности.

Кроме того, если будите использовать тот же конфигурационный файл для тест мема, что и у меня, то в первой партии настроек сразу урезайте tFAW. Его по дефолту материнские платы на высоких частотах ставят за 50, а рабочие значения всегда ниже 20. И уменьшение этого значения сильно уменьшает время прогона тест мема. Он проходится быстрее процентов на 30, что в масштабах всего разгона памяти может выйти в экономия часа времени, а то и больше.

Возвращаясь к длительности разгона: в процессе его осуществления вы нащупаете такие значения, что вот почти есть стабильность, всё работает, но вот чуть-чуть бы ещё стабильности и ошибок не будет, а в остальном и так всё работает и в играх и в программах. Именно для этого я ранее писал, что надо ставить напряжение, чуть ниже, чем финальное. 10-20 милливольт в последствии и дадут вам эту недостающую стабильность и вам не придётся скидывать на единицу в том числе и основные тайминги.

Ну и приятная часть разгона заключается в том, что тепловыделение системы практически не меняется, а производительность начинает расти.

Результаты

На этом мы переходим к практической части разгона и посмотрим на полученные результаты.

К сожалению — полученные в прошлой части 5,2 Адаптив модом с офсетом с разгоном памяти стали нестабильными на том же напряжении, всё же — более плотная нагрузка на процессор из-за меньших простоёв с быстрой памятью сказывается на сложности работы процессора. Конечно 5,2 Всё ещё можно получить, но на более высоких напряжениях и для той же производительности с большим теплопакетом, что нарушает логику разгона на постоянку.

Так что всё переигрываем на 5,1 ГГц. Естественно с тем же теплопакетом в 145 Ватт.

То есть от стока система так и будет отличаться на 50 Ватт, как и в прошлой части.

Получается систем будет 4.

Первая — сток процессор, память XMP профиль на 3000 МГц.

Вторая система — процессор разгон — память такая же на 3000 МГц.

Третья система — процессор разогнан память XMP профиль на 4400 МГц на новом комплекте памяти

И четвёртая система — процессор разогнан, память в максимальном разгоне, что вышел для этих планок, и вышел он на частоте 4266 МГц.

Разгон памяти, против разгона ядер

Что касается тестов в играх — тут есть некоторые сложности. Я тестирую игры с максимальными настройками, но без сглаживания и в сниженном разрешении, если это требуется для тестов процессора, чтобы избавиться от упора в видеокарту RTX 2070. И из теста выбывает игра The Division 2, так как с разгоном памяти система слишком производительная и без снижения настроек графики ибавиться от упора в видеокарту не получается даже на разрешении 1024х768 с половинным масштабом разрешения. Так же есть подозрения что в игре Shadow of the Tomb Raider в некоторые моменты так же с разгоном памяти система ограничивалась видеокартой.

Перед играми ещё раз посмотрим на бенчмарки.

Для начала тесты в AIDA64.

Память 3000 МГц в стоке процессора.

Скорость и чтение около 45000 МБ/с, задержки 48 наносекунд.

С разгоном процессора, напомню, ещё разгонял я и кольцевую шину и кеш, что так же ускоряет и реальную скорость работы памяти.

Прибавилось примерно по 1000 МБ/с и немного уменьшились задержки памяти.

XMP профиль на 4400 МГц на разогнанном процессоре дают уже под 60000 МБ/с и задержки снизились до 43 нс.

Ну и последний профиль — с ручным разгоном на частоте 4266 МГц с подбором некоторых субтаймингов.

Добавилось ещё около 3-х тысяч МБ/с, задержка упала ниже 40 нс.

Разгон памяти, против разгона ядер

Разгон памяти, против разгона ядер

Его бенчмарк очень любит низкие задержки памяти.

Разгон процессора дал прирост около 5%.

Смена памяти с 3 до 4,4 ГГц дала ещё 1,5% пророста.

Ручной подбор субтаймингов и таймингов на частоте 4266 МГц памяти позволил увеличить производительность в сравнении со стоком на без малого 20%.

Разгон памяти, против разгона ядер

Возникает закономерный вопрос — почему же такой слабый прирост от смены памяти и такой большой от подбора субтаймингов, да ещё и на более низкой частоте памяти.

Причин тут несколько.

Во первых — естественно ручной разгон памяти позволяет более качественно получить потенциал памяти.

А причина низкого прироста от смены памяти заключается в том, что мне пришлось сильно повысить энергопотребление процессора из-за высоких напряжений на агент и контроллер памяти. А, напомню, что разгоняли мы процессор существенно ограничивая его TDP, в общем-то в этом и был смысл видео про разгон на постоянку. То есть часть ограниченного TDP отъел контроллер памяти, ну и, конечно, с более быстрой памятью процессор на той же частоте начинает потреблять больше энергии в силу уменьшения простоев процессора в ожидании данных — собственно, что и является причиной роста производительности.

При этом мой процессор может с памятью на 4266 МГц работать по напряжению на контроллер почти как у стока, а на 4400 на уже высоких напряжениях. В общем — причина тут не в памяти как таковой, а в ограниченном условиями тестов TDP, и то что этот TDP отбирает контроллер в процессоре.

Более показателен был, например, 3D Mark TS. И, кстати, в этом этот бенчмарк ещё и показывает, что хоть он и имитирует игровую нагрузку, но всё же — он далёк от реальных задач.

Разгон памяти, против разгона ядер

В CPU тесте от смены памяти на более производительную с XMP профилем на 4400 МГц производительность вообще упала.

В традиционном разгоне с фиксацией частот, такого эффекта, конечно не будет. Но у нас сейчас именно такие условия.

С ручным разгоном памяти в сравнении со стоком я получил прирост в 13%.

Результаты в играх

Я уже ранее писал, что есть неуверенность относительно Shadow of the Tomb Raider. Но даже с возможными временными ограничениями в видеокарту просто разгон процессора дал прирост в примерно в 6%, а разгон и ядер и памяти дал прирост в 18%.

Разгон памяти, против разгона ядерКоличество отрисованных кадров в бенчмарке

Ну и тут уже при росте TDP процессора на 40% — прирост производительности на 18% — это уже приличный результат.

Другие игры рассмотрим уже более детально.

World War Z. Просто разгон ядер дал прирост около 6%. Разгон со сменой памяти на быструю увеличил прирост до почти 9%.

Разгон памяти, против разгона ядер

А ручной разгон памяти приводит уже к росту от стока чуть более чем на 19,5%.

Тут стоит пристально обратить внимание на график времени кадра.

Разгон памяти, против разгона ядер Нажмите для увеличения

Видно, что несмотря на то, что синхронизация отключена — вывод кадров происходит с дискретным времением, что также могло сказаться на результатах, то есть простая смена памяти не позволила достаточно часто перескакивать на более низкий уровень времени кадра, а ручной разгон — позволял.

Разгон памяти, против разгона ядер Нажмите для увеличения

С этим связано столь нелинейное изменение производительности от дополнительного разгона памяти.

Если посмотреть на графики распределения времени кадра, то на них тоже видно неестественные для этого графика ступеньки.

Разгон памяти, против разгона ядер Нажмите для увеличения

Напомню что этот график рассказывает о том как часто какие по длительности кадры встречаются в тесте.

Ну и так же — многие любят значения меньших 1 или 5% (они же 99%, 95%).

Разгон памяти, против разгона ядер Нажмите для увеличения

В этом графике вы можете получить любые значения для любых этих процентилей, а 50% — это медианное значение.

Разгон памяти, против разгона ядер Нажмите для увеличения

Но тут, в связи с особенностями игры, эти графики несколько не способны отражать реальность.

И последняя игра в тесте — Far Cry 5.

Разгон памяти, против разгона ядер

Просто разгон процессора позволил получить примерно +3,5% прироста, смена памяти увеличила этот прирост до чуть более чем 8%, а ручной разгон памяти позволил увеличить эту цифру до почти 16,5%.

Разгон памяти, против разгона ядер Нажмите для увеличения

График распределения тут показывает, что в целом, на большей части значений мгновенных FPS смена памяти на ту что с профилем на 4400 МГц позволила добиться прироста сопоставимого с разгоном ядер, и только в области высоких FPS — разгон памяти оказывает большее влияние, чем разгон ядер.

Разгон памяти, против разгона ядер Нажмите для увеличения

Ручной разгон памяти — позволил добиться существенного роста производительности в сравнении с остальными тестами.

Разгон памяти, против разгона ядер Нажмите для увеличения

Итоги

Во первых — естественно при разгоне гнать надо всё.

Но разгон памяти при этом — более безвреден в части энергоэффективности системы.

В прошлой части — увеличив энергопотребление системы я получил прирост от 2-х до 12% в зависимости от задачи.

Сейчас же, разгоняя и память и ядра получил при том же росте потребления на 50% прирост производительности от 10 до 20% в зависимости от задачи.

Ну и в целом, учитывая, что 50% прироста тепловыделения — это не плюс 200-300 Ватт ко всей системе, а плюс 50 Ватт — прирост в 10-20% выглядит вполне эффективным и в части энергоэффективности, безусловно, разгон памяти существенно более предпочтителен, чем разгон ядер, а в части абсолютного прироста — разгон ядер и памяти на i9 9900k вышли примерно равнозначными и в одних задачах больший эффект дал разгон ядер, а в других, в частности в играх — разгон памяти. Если говорить только про игры, то конечно, в реалиях когда процессоры уже с завода выходят практически без возможности разгона, да ещё и с большим числом ядер всего на два канала памяти — разгон памяти играет большую роль, чем разгон ядер.

В целом — если говорить про стоковые планки DDR4, то полученные планки в разгоне примерно достигли скорости работы 4-х канальной памяти всего на двух каналах. 16 ядерные райзены частично спасает большой кеш, если говорить про два канала памяти, но всё равно и на 16 ядер на райзене и на 8 или 10 в intel — два канала памяти — это очень мало. Отсюда и прирост на 20% в некоторых задачах.

Ну и в данном тесте были планки с чипами от самсунг B-Die. Это лучшие чипы на DDR4 памяти. И тут я предлагаю поднять вопрос — а на сколько один B-Die может отличаться от другого. Например у меня в материнской плате есть пресеты настроек под B-Die, есть настройки в райзен DRAM калькуляторе под B-Die. Но никогда лично мне ничего из этого готового не подходило. Сейчас же у меня есть 3 комплекта би дай памяти одноранковой 2 модуля по 8 гигов.

Разгон памяти, против разгона ядер

И скажу, что этот комплект от патриот намного лучше моего первого комплекта.

Разгон памяти, против разгона ядер

А есть у меня ещё и третий комплект, который я недавно купил.

Разгон памяти, против разгона ядерXMP профиль третьего комплекта B-Die памяти

В общем — имеется возможность узнать — насколько высок разброс B-Die, который я покажу в одной из будущих статей.

Влияние тактовой частоты на производительность процессора

На что влияет тактовая частота процессора

Для начала разберемся, что же такое тактовая частота (ТЧ). Само понятие весьма широкое, но применительно к CPU, можно сказать, что это количество операций, которое он может выполнить за 1 секунду. Этот параметр не зависит от количества ядер, не складывается и не умножается, то есть все устройство работает с одной частотой.

Написанное выше не касается процессоров на архитектуре ARM, в которых одновременно могут использоваться быстрые и медленные ядра.

Измеряется ТЧ в мега- или гигагерцах. Если на крышке ЦП указано «3.70 GHz», то это значит, что он способен выполнить 3 700 000 000 действий в секунду (1 герц – одна операция).

Тактовая частота указана на крышке процессора

Встречается и другое написание – «3700 МГц», чаще всего в карточках товаров в интернет-магазинах.

Указание базовой тактовой частоты процессора в карточке товара

На что влияет тактовая частота

Здесь все предельно просто. Во всех приложениях и при любых сценариях использования величина ТЧ в значительной мере влияет на производительность процессора. Чем больше гигагерц, тем быстрее он работает. Например, шестиядерный «камень» с 3.7 GHz будет быстрее аналогичного, но с 3.2 GHz.

Разница в производительности процессоров с разной тактовой частотой

Значения частоты напрямую указывают на мощность, но не стоит забывать о том, что каждое поколение процессоров имеет свою архитектуру. Более новые модели окажутся быстрее при тех же характеристиках. Впрочем, «старичков» можно разгонять.

Разгон

Тактовую частоту процессора можно поднять с помощью различных инструментов. Правда, для этого необходимо соблюсти несколько условий. И «камень», и материнская плата должны поддерживать разгон. В некоторых случаях достаточно только разгонной «материнки», в настройках которой повышается частота системной шины и других компонентов. На нашем сайте довольно много статей, посвященных этой теме. Для того чтобы получить необходимые инструкции, достаточно на главной странице ввести поисковый запрос «разгон процессора» без кавычек.

Поиск инструкций по разгону центрального процессора на сайте Lumpics.ru

Как игры, так и все рабочие программы положительно реагируют на высокие частоты, но не стоит забывать, что чем выше показатель, тем больше температуры. Особенно это касается ситуаций, когда был применен разгон. Здесь стоит задуматься о том, чтобы найти компромисс между нагревом и ТЧ. Не стоит также забывать о производительности системы охлаждения и качестве термопасты.

Заключение

Тактовая частота, наряду с количеством ядер, является основным показателем скорости работы процессора. Если требуются высокие значения, выбирайте модели с изначально большими частотами. Можно обратить внимание и на «камни», подлежащие разгону, только не забудьте о возможном перегреве и позаботьтесь о качестве охлаждения.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.

Помимо этой статьи, на сайте еще 12600 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Отблагодарите автора, поделитесь статьей в социальных сетях.

ЗакрытьОпишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Стоит ли разгонять процессор: плюсы и минусы

История процесса Как разогнать процессор Разгон памяти, против разгона ядер

Разгон — не новая технология. Этот процесс почти такой же старый, как и сами компьютеры. Инициировали его сами производители в сфере компьютерной техники. В 1983 году IBM выпустила процессор с тактовой частотой 4,7 МГц для поддержания стабильности системы. Вскоре другие изготовители попытались увеличить тактовую частоту этого процессора до 10 МГц, и в мире началась битва за частоты.

В то время нужно было приложить немного усилий, чтобы увеличить частоту процессора, поскольку требовалось изменить кварцевый кристалл, который ее регулировал. Тогда аппаратное обеспечение ПК было полностью интегрировано, и увеличение частотности, что дает разгон процессора, изменяло частоту практически на всех устройствах.

История процесса

Это коснулось некоторых программ и игр, которые не были готовы к работе на разгоне, так как они непосредственно зависели от процессора для регулирования скорости. Многие геймеры того времени начинали разгон, играя с перемычкой материнской платы 486.

Увеличение частоты процессоров как при разгоне, так и за счет естественной эволюции привело к тому, что ряд приложений остались без применения, что привело инженеров к созданию турбокнопки в машинах. Она долгое время была почти мистическим инструментом производительности, поскольку некоторые геймеры считали, что достаточно нажать ее, чтобы быстрее начать игру, и это было правдой.

Интересен тот факт, что функция турбонагнетателя заключалась не в том, чтобы позволить машине работать быстрее, а в том, чтобы она работала стабильнее. В современном оборудовании синхронизация приложений является виртуальной, а турбокнопка исчезла навсегда. Поддерживая безудержные стремления геймеров к увеличению скорости игр, производители сами начали задумываться о том, что дает разгон процессора, и выработали ряд усовершенствованных продуктов.

Разгон процессоров AMD и Intel

Это касается как AMD так и Intel. Разблокированные процессоры Intel не поставляются со штатным кулером и хотя более мощные модели Ryzen раньше поставлялись с очень хорошими кулерами Wraith Spire и Wraith Prism, Team Red сделала шаг назад в этом направлении и в продажу поступают новейшие модели Ryzen 5000 с кулерами Wraith Stealth, которые не очень хороши для разгона.

Стоит ли покупать разблокированный процессор или заблокированный

Тем не менее разгон — это во многом игра для продвинутых пользователей. Сам процесс выжать каждый бит вычислительной мощности из процессора — это часть удовольствия для любителей ПК. Для тех, кто не причисляет себя к этой аудитории, этот процесс вероятно, будет казаться не более чем сложной и долгой работой, которая в конечном итоге принесет очень мало удовлетворения.

Стоит отметить, что разгон ЦП может дать более заметный прирост производительности определенного профессионального программного обеспечения с высокой нагрузкой на процессор, он может сделать его более перспективным. Просто он не дает такого большого толчка, когда дело касается игр, как многие думают.

Эволюция микропроцессоров

Много микропроцессоров

Intel Pentium 4 — это микропроцессор седьмого поколения, основанный на архитектуре и произведенный Intel x86. Это первый процессор с абсолютно новым дизайном от 1995 г. Оригинальный Pentium 4, работал на частотах 1,4 и 1,5 ГГц и был выпущен 20 ноября 2000 г. 8 августа 2008 — последнюю поставку Pentium 4 заменили Intel Core Duo. Геймеры сразу же подхватили эту тему и стали дополнительно думать над тем, что дает разгон процессору Intel Core.

Эволюция микропроцессоров

Первая версия Pentium 4 пострадала от значительных задержек при разработке. На самом деле многие эксперты утверждают, что модели 1,3; 1,4 и 1,5 ГГц были выпущены преждевременно. Новейшие модели Thunderbird AMD имели производительность, превосходящую Intel Pentium III. Они были изготовлены с использованием 180 нм процесса и разъемом 423 для подключения к материнской плате, поэтому нужна была их модернизация, чтобы геймер не задумывался над тем, что дает разгон процессора и принудительно не гробил оборудование.

Northwood в октябре Athlon XP 2001 возобновил лидерство в скорости, а в январе 2002 года Intel запустила на рынок новый 2,0 и 2,2 ГГц процессор. Эта версия сочетала в себе увеличение от 256 до 512 Кбайт в устройстве кэша с переходом к технологии в производстве 130 нм. Будучи микропроцессором, состоящим из более мелких переходных процессов, он смог достигать более высоких скоростей и в то же время потреблять меньше энергии. Новый процессор работал с разъемом 487, который был установлен в последних моделях серии Willamette. В серии Northwood Pentium 4 достигает своей зрелости и дает разгон процессора в играх, что было ожидаемо в среде пользователей ПК.

Борьба за высочайшую производительность набирала обороты с выходом на рынок более быстрых версий AMD Athlon XP. Большинство игроков пришли к выводу, что самый быстрый Northwood всегда немного выше моделей AMD. Это стало заметным после того, как переход на производство AMD 130 нм был отложен. Это стало свежим импульсом производителя в разработке нового алгоритма, что дает разгон процессору Пентиум 4.

В сентябре 2003 года Intel объявила о выпуске экстремального (Extreme Edition) Pentium 4 не более чем за неделю до запуска Athlon 64 и Athlon 64 FX. Причиной запуска было то, что AMD снова быстро догнала Intel, по этой причине их назвали Emergency Edition. Дизайн был идентичным Pentium 4 в той степени, что они стали работать на тех же материнских платах, но отличались наличием двух дополнительных Мб кэш-памяти L3. Они использовали ту же технологию Gallatin, что и Xeon MP, и имели частоту FSB 800 МГц, что почти вдвое больше, чем в Xeon MP, что дает разгон процессора в играх более значимо.

Хотя Prescott работает на той же скорости, что и Northwood,а обновленная архитектура позволила достичь более высоких скоростей. В начале 2006 года Intel представила свои новейшие процессоры, ориентированные на бизнес, дизайн и игры с двухъядерными и четырехъядерными процессорами и скоростью 1,7; 1,8; 2,1; 2,4; 2,5; 2,66; 2,83; 3,0 и 3,2 ГГц. Цены на 4-ядерный процессор (QuadCore) были по-прежнему очень высоки. Таким образом, было принято направление развития в сторону технологии, что даст разгону процессора реальный импульс ускорения. Оно заключалось в увеличении количества ядер для оптимизации мультимедийной производительности.

Тонкости оверклокинга

Нет напряжения — нет результата

Как вы уже поняли, повысить производительность процессора можно увеличив множитель или частоту шины, но это не всё. Изменение одного из двух параметров не даст результата. Чтобы камень стабильно работал на повышенной частоте, ему потребуется более высокое напряжение. Тут-то и кроется самое интересное.Процессору сложно навредить своими действиями, он хорошо защищен от многих факторов. Но вот при повышении напряжения, он может выйти из строя. Поэтому для каждой модели существует свой предел, который лучше не превышать. Зачастую эти значения равняются 1,4v. Чтобы узнать точное значение — смотрите спецификацию на сайте разработчика.

Но и на этом танцы с напряжением не заканчиваются. При повышении напряжения повышается и количество выделяемого тепла, вспоминаем физику. Вам потребуется позаботиться о качественном охлаждении. Например, процессор Ryzen 5 2600 работает на частоте 3,4 Ггц и выделяет около 65 Ватт тепла. При разгоне до 3,8 Ггц, количество Ватт переваливает за сотню. Соответственно, боксового кулера ему уже не хватает. Также повышается и уровень энергопотребления. Подумайте о том, чтобы ваш блок питания справился с нагрузкой. Вообще, разгон дело сугубо индивидуальное, и даже одинаковые модели с разным успехом поддаются оверклокингу.

Мать — всему голова

Оверклокинг зависит от возможностей материнской платы. Не все чипсеты имеют одинаковый функционал. Например, материнские платы для Ryzen на чипсете A320 (и его модифицированные варианты) не предназначены для оверклокинга. А B350 и X370 его поддерживают.Обратите внимание и на форм-фактор материнской платы. Полноразмерные решения формата ATX — хороший выбор. Micro-ATX имеют слабую подсистему питания процессора. Зачастую наделены урезанной версией БИОС с малым количеством настроек. Так же для них характерен высокий нагрев из-за плохого охлаждения мостов. Безусловно, существуют исключения из правил, но в целом полноразмерные материнские платы лучше подходят для разгона.

Перед разгоном в обязательном порядке требуется обновить прошивку БИОС до последней версии. Особенно это касается владельцев современных процессоров от AMD. Благодаря обновлениям повышается стабильность разгона и расширяется функционал БИОСа. Также крайне желательно иметь обновленную операционную систему Windows 10.

Подготовка машины к разгону

Первое, что нужно сделать, прежде чем попытаться ускорить компьютер, это выяснить, способен ли он это сделать. Многие материнские платы и процессоры Intel поставляются с заблокированными множителями, что не позволяет им изменять свои значения и разгонять процессор. Еще одна проблема — тепло. Чем большее напряжение подается к элементам ПК, тем больше они генерируют энергию. Для обеспечения эффективного разгона необходимо следить за стабильной работой процессора. С этой цельюо лучше использовать специальные программы, например, Prime95 и программу контроля температуры Core Temp, которая даст разгон процессора, что крайне негативно скажется на состоянии компьютера в целом.

Программа контроля температуры Core Temp

После загрузки этих программ на ПК запускают Core Temp для мониторинга температуры компьютера. Далее открывают Prime95 и нажимают функцию «стресс-тест», чтобы определить, как процессор работает по умолчанию на заводской скорости.

Алгоритм подготовки ПК к разгону:

  1. Устраняют возможные трояны и шпионские программы. Устанавливают антивирус и выполняют тщательную проверку компьютера не реже одного раза в неделю.
  2. Обнаружение несовместимости. Иногда случается, что определенные периферийные устройства не ладят друг с другом или видеокарта не на 100 % совместима с шиной материнской платы, поэтому не работает с максимальной производительностью. В поисковой системе Windows находят Панель управления и входят в Диспетчер устройств. В окне будет показано оборудование компьютера. Если при этом на обозначении устройств будут желтые значки, то Windows не распознает такие, или они будут несовместимы с другими.
  3. Обновить БИОС. Эта операция исправляет ошибки, улучшает производительность оборудования и добавляет поддержку более новых периферийных устройств. Обновления BIOS — это деликатная операция, для которой нужно использовать правильную версию и не выключать компьютер в середине процесса, поскольку он может перестать работать вообще. Если пользователь не уверен, как это сделать, лучше обратиться за помощью к опытному специалисту.
  4. Обновить операционную систему, что поможет исправить ошибки, решить проблемы совместимости, добавить поддержку DirectX для новых игр и компонентов и улучшить интеграцию периферийных устройств, таких как геймпады или беспроводные наушники.
  5. Обновить драйверы, особенно для видеокарты, что не только обеспечит совместимость для новых игр и исправит возможные графические ошибки, но также включит особые режимы повышения производительности для самых требовательных игр.
  6. Оптимизировать видеокарту. Хотя стандартные значения драйвера карты обычно работают достаточно хорошо, этого мало, чтобы извлечь из них максимум. Все видеокарты имеют панель управления, которая позволяет их настраивать. На ней можно увидеть вкладки, чтобы сделать общие настройки для всех игр или индивидуальные для каждого режима.
  7. Снизить температуру оборудования. Одним из параметров, который больше всего замедляет работу компьютера, является тепло, выделяемое чипами, и если оно рассеивается не правильно, микросхемы и схемы материнской платы сильно нагреваются, что может привести к блокированию или перезапуску Windows. Почти все материнские платы имеют программное обеспечение, которое измеряет температуру.
  8. Удаляют неработающие программы.
  9. Облегчают запуск Windows.
  10. Отключают приложения в фоновом режиме.
  11. Отключают P2P и облачные функции.

Это вполне достаточный перечень настраиваемых параметров, чтобы компьютер был готов к разгону.

Если на компьютере установлено программное обеспечение, такое как NVIDIA GeForce Experience или AMD Gaming Evolved, они самостоятельно оптимизируют игру с соответствующими настройками для этого режима. Этот тип программного обеспечения поставляется вместе с драйвером видеокарты и, наряду с последней версией DirectX 12 в Windows 10, повышает производительность машины. Геймеру остается только время от времени обновлять драйвера, чтобы получить максимальную отдачу от игр и не задумываться над тем, какой прирост дает разгон процессора.

Что такое разблокированный множитель в процессоре и что он дает?

Всем привет! Сегодня разберем такое понятие как разблокированный множитель процессора – что это такое, зачем нужно знать этот параметр, что значит такая «фишка» с практической точки зрения.

цп с нижней стороны

В ИТ-новостях часто мелькают сообщения, что компания АМД или Интел выпустила очередной процессор с разблокированным множителем для настольных компьютеров. Это вызывает дежурный всплеск энтузиазма оверлокеров, радостно потирающих руки в предвкушении очередного теста.

Оверлокинг, то есть разгон – тонкая настройка ЦП, ОЗУ и системной платы, которая позволяет повысить производительность системы в целом.

Благодаря настройкам мощности, частоты работы ядер и памяти, параметров напряжения можно выжать максимум из компонентов, которые поддерживают такую функцию. Это полезно при решении компьютером(ПК) прикладных задач – при запуске игр или требовательных к ресурсам приложений.

Предварительно давайте выясним, из чего образуется тактовая частота «камня». Например, у нас есть шина на материнке с частотой (FSB) 300 МГц, и процессор с множителем 10. Этот параметр также называют multiplier.

Произведением от умножения этих двух чисел и будет частота ЦП, в рассматриваемом нами случае 3 ГГц. Сегодня это вполне неплохо для девайса средней мощности, если у него разблокирован multiplier.

cpu серии razen

При увеличении этого показателя до 11, частота будет уже 3,3 ГГц. Детальнее о том, на какие параметры еще обратить внимание, читайте в публикации «Кто победил – тактовая частота или количество ядер в CPU».

Также стоит учитывать, что свободный multiplier в «камнях» – скорее исключение, чем правило. Большинство таких комплектующих поступают на прилавок с блокированным на повышение множителем.

Понижать его можно через настройки БИОСа. Это – «кривой оскал капитализма», так как производители блокируют multiplier умышленно, дабы решить пользователя возможности купить дешевле «камень» с увеличенной производительностью.

Никто не захочет покупать деталь за 300 долларов с блокированным множителем, если можно купить за 200 компонент немного слабее и благодаря разблокированному multiplier, разогнать его до той же мощности.

О том, разблокирован ли multiplier, можно узнать из спецификации ЦП. При подборе этой детали, рекомендую поискать результаты испытания конкретных моделей на тестовых стендах. В таких случаях экспериментаторы обычно проверяют еще массу прочих параметров.

Список процессоров с разблокированным множителем регулярно пополняется. Соревнуются не только сами оверлокеры на предмет того, кто сможет выжать больше из одного и того же железа, но и производители – чьи комплектующие выгоднее купить, чтобы потом разогнать до необходимых тактовых единиц.

Можно ли разблокировать Intel или AMD, влияет прежде всего ограничение, установленное width=»552″ height=»318″[/img]

Если multiplier блокирован, ни программными, ни аппаратными средствами его уже не разблокировать.

Однако и такой «камень» можно разогнать другими способами (например, с помощью специальных утилит), подняв немного частоту. Что это дает и на что влияет? Как и в случае с увеличением множителя, повышается производительность системы и, соответственно, ее быстродействие.

И напоследок – как узнать текущий multiplier, не запуская BIOS. Для теста «камня» есть замечательная утилита CPU‑Z, сканирующая все его рабочие параметры. Она англоязычная, поэтому множитель обозначается как Multiplier в разделе Clock, а тактовая частота как Core Speed.

Также для вас могут оказаться интересными публикации «Битва процессора Intel Core i3 против i5» и «Рейтинг процессоров компании AMD». Буду признателен всем, кто поделится этой информацией в социальных сетях. Всем пока или до завтра!

С уважением, автор блога Андрей Андреев.

Размещение операционной системы на SSD

Размещение операционной системы на SSD

Твердые SSD-диски начинают заменять традиционные жесткие диски. В них нет движущихся частей, поэтому они меньше нагреваются, энергоэффективные и работают быстрее. Для стабильной работы ПК и подготовки к разгону рекомендуется установить SSD и зарезервировать место для операционной системы. Запуск Windows и работа системы будет гораздо быстрее.

На протяжении работы ПК Windows накапливает файлы, папки кэша, временные файлы, потерянные записи в реестре и другой нежелательный контент, который бесполезен и снижает производительность. Для удаления выполняют очистку системы с помощью программы CCleaner Free или ее аналогов. Предварительно убеждаются, что программа очистила не только файловую систему, но и реестр.

Хотя Windows 8 и 10 автоматически дефрагментирует жесткие диски, рекомендуется периодически проводить эту операцию самостоятельно. Это означает, что фрагменты одного и того же файла будут отслежены на жестком диске и очищены, а следовательно, ПК будет работать быстрее.

Для SSD-накопителей не требуется дефрагментация, а выполняется операция оптимизации. Для этого в поле поиска вводят «Дефрагментация», открывают окно «Оптимизировать единицы измерения», выбирают диски без SSD и нажимают «Оптимизировать».

Настройка BIOS компьютера

Настройка BIOS компьютера

Разгон компьютера можно выполнить через БИОС. Перед тем как разогнать процессор через BIOS, перезагружают ПК, нажав DEL, ESC или F2 на главном экране и входят в конфигурацию запуска BIOS. Находят вкладку разгона, чтобы ускорить скорость процессора. Она может иметь и другое название в зависимости от производителя. В некоторых BIOS можно найти эту функцию в разделе «Другие параметры частоты».

Большинство производителей используют профили разгона, которые обычно варьируются от 4 ГГц до 4,8 ГГц и зависят от установленного процессора. Настройки материнской платы на один из этих режимов — самый простой и быстрый способ разгона. Можно выйти за пределы 4,8 ГГц, предлагаемых автоматическими профилями, что дает разгон процессора Intel наиболее перспективным.

Порядок увеличения скорости:

  1. В меню «Advanced Frequency Settings» или в меню разгона на компьютере находят базовые часы CPU (Base Clock) и увеличивают их скорость на 10 %. Как только это начальное увеличение будет выполнено, перегружают компьютер и запускают тест Prime95. Если проблем нет, можно продолжить. Если система станет нестабильной, следует рассмотреть возможность возврата к предустановленным значениям.
  2. В случае если нужно будет продолжить ускорение процессора, возвращаются к конфигурации базовых часов и увеличивают их снова в процентном соотношении понемногу и всегда ниже, чем в предыдущем. Обращают внимание на то, что после каждого увеличения требуется перезагрузка ПК и тест Prime95.
  3. Для завершения разгона процессора нужно отрегулировать множитель с увеличением каждый раз на 0,5. Находят множитель на вкладке БИОС «CPU Clock Ratio» или что-то в этом роде и не забывают тестировать работу ПК каждый раз, когда изменяется множитель, и следить за общей температурой ПК, чтобы избежать его поломки.

Установка виртуальной памяти

Установка виртуальной памяти

Если на компьютере менее 4 Гб оперативной памяти, что очень мало, она будет заполнена практически мгновенно. Вместо нее Windows будет вынужден использовать жесткий диск, но гораздо медленнее, что станет тормозить работу компьютера. Этот параметр известен, как виртуальная память. Ее можно оптимизировать, чтобы использовать более эффективно. Процедура оптимизации на Windows 10, что дает разгон процессора и оперативной памяти:

  1. Нажимают правой кнопкой мыши кнопку «Пуск» и выбирают «Панель управления».
  2. Вводят: Advanced System Configuration.
  3. В окне «Дополнительные параметры» находят раздел «Производительность» и выбирают «Настройки».
  4. Открывают «Дополнительные параметры», вкладку «Виртуальная память» и выбирают «Изменить».
  5. Снимают флажок «Автоматическое управление размером файла».
  6. Выбирают диск с установленной ОС Win 10 и отмечают опцию нестандартного размера.
  7. В исходной строке вносят изменение в размер памяти в Мб.
  8. Устанавливают максимальный размер в 3 раза больше ОЗУ. Например, на компьютере с 4 Гб ОЗУ начальный размер 4 x 1,5 = 6 Гб = 6 000 Мб и максимальный размер 4 x 3 = 12 Гб = 12 000 Мб.

Разгон CPU и GPU

Можно вручную ускорить работу ПК с использованием специальных программ или утилит для разгона, таких как Intel Extreme Tuning Utility для материнских плат на базе Intel или технологию AMD OverDrive для систем на базе AMD. Эти программы могут одновременно помочь пользователям контролировать весь потенциал системы, что дает разгон процессора AMD в играх.

Этим методом не рекомендуется разгонять ноутбук, так как его система охлаждения не так хороша, как у настольного ПК, и может привести к перегреву его компонентов.

Razer Cortex — самая популярная программа для оптимизации системы, ориентированная на ПК. Она убирает все ненужные фоновые процессы и управляет объемом оперативной памяти или количеством ядер для конкретной игры. Конечный результат — более мягкий геймплей и короткие задержки. У программы есть некоторые полезные функции, такие как экран быстрого касания и ускоритель кадров. Это позволяет дефрагментировать раздел жесткого диска, содержащего игру, чтобы увеличить производительность.

Wise Game Booster простая и удобная программа оптимизации игры. Ее можно рассматривать как ПО диспетчера задач с акцентом на игру. Лучшее качество Wise Game Booster — это простота работы программного продукта. Кроме того, она очень мало потребляет системных ресурсов. Сканирование проходит быстро, а решения по оптимизации — мгновенные. Приложение является бесплатным и представляет собой простое решение, которое позволяет добиться максимальной производительности игр на старом ПК или компьютере с низким уровнем мощности.

Мир возможностей Intel и AMD

Важными компонентами, которые позволяют максимально эффективно использовать процессор или память, являются материнская плата и чипсет. В мире сейчас две самые распространенные марки процессоров:

  1. Intel имеет процессоры Core 2 Duo / Quad и процессоры на базе Nehalem, Core i7.
  2. AMD с ассортиментом с Phenom II X4 и X3.

Intel традиционно скрывает в своих предложениях параметры разгона, хотя другие производители включили изменение таких параметров, как скорость шины и напряжение. С появлением Core i7 Intel открыла двери для разгона процессоров таких производителей, как Asus, Gigabyte или MSI, которые явно делают ставку на эти технологии для плат Asus Rampage 2 Extreme с чипсетом X58.

Особо выделяются возможности AMD на чипсете 790FX с такой функцией, как ACC (Advanced Clock Control), и диапазон процессоров Black Edition, в которой множитель разблокирован, как в Intel Extreme Edition.

MSI Afterburner — лучшее ПО для Intel

MSI Afterburner лучшее ПО для Intel

MSI Afterburner — самое популярное в мире и лучшее программное обеспечение для разгона процессоров Intel, а также утилита для разгона видеокарт, что дает разгон процессору e5300 2 60ghz, но и позволяет полностью контролировать процесс. Afterburner предоставляет подробный обзор оборудования в дополнении к настройке профилей вентиляторов, можно полностью настроить предопределенную кривую скорости вращения для определения производительности охлаждения, бенчмаркинг и запись видео.

Afterburner бесплатен и может использоваться с видеокартами любых брендов, а самое приятное в том, что он позволяет новичкам легко получить максимальную отдачу от производительности установленного оборудования. Он включает в себя настройку тактовой частоты графического процессора (шейдера) памяти, регулировку скорости вращения вентилятора и настройку управления напряжением графического процессора. Его аппаратный монитор, который является частью интерфейса, эффективно отслеживает производительность установки и показывает частоту кадров во время игры.

Другие функции включают в себя тройное перенапряжение, которое дает преимущество благодаря точному управлению напряжением основной памяти и PLL, счетчик FPS в игре с информацией в реальном времени о производительности системы на экранном дисплее, чтобы можно было контролировать эффект от настройки разгона во время игр. Пользователь также получаете 64-битную поддержку для таких приложений, многоязычную поддержку, инструмент Kombustor для тестирования производительности на основе программного обеспечения Furmark, позволяющий довести видеокарту до предела и проверить как стабильность, так и тепловую производительность. Имеется функция захвата видео, чтобы геймеры могли зафиксировать свою лучшую производительность в играх или разгоне, не пропуская ни одного кадра.

Стоит ли вообще заниматься разгоном?

Во-первых, для тех кто не в курсе, разгон — это действие по увеличению тактовой частоты процессора (выраженной в Гц ) за стандартные заводские ограничения, что увеличивает данных, которые он может обрабатывать каждую секунду. Это улучшает чистую одноядерную производительность процессора, хотя также увеличивает тепловыделение, как упоминалось выше.

Тем не менее, нельзя отрицать, что разогнанные процессоры работают лучше, чем которые работают со штатными заводскими настройками, но действительно ли прирост производительности имеет заметное значение?

Когда дело доходит до игр, обычно ответ: нет. Конечно это во многом будет зависеть от того, насколько интенсивно загружена игра на ЦП, но в целом прирост производительности в игре от разгона ЦП обычно сводится к нескольким кадрам.

Теперь не только прирост производительности очень ограничен, но и разгон также сопряжен с дополнительными расходами, так как вам придется вложиться в относительно дорогой послепродажный кулер , чтобы полностью использовать потенциал разгона процессора.

Сбой аппаратной структуры

Сбой аппаратной структуры

В практике разгона увеличение частоты и напряжения не может выполняться без уверенности в том, что генерируемое тепловыделение гарантированно удаляется надежной системой охлаждения. Обычные вентиляторы готовы рассеять номинальную мощность процессора, которая составляет 130 Вт. Температура выше 70 °C опасна при разгоне процессора Пентиум, что дает всей системе нестабильность и высокую пожароопасность в сети.

Чем выше нагрев процессора, тем сильнее это снижает надежность оборудования, а также срок его полезного использования. Чтобы разогнать процессор, увеличивают скорость системы, поэтому компоненты машины будут работать быстрее. При этом система будет иметь более высокую производительность с максимальной скоростью обработки памяти, HD, GPU. И если пользователь не примет необходимые меры предосторожности, могут возникнуть множественные сбои, которые способны даже вызывать горение процессора и компьютера.

Разгон считается безопасным и возможен только на машинах, способных выдерживать перегрев, на процессорах высокого качества с надежным охлаждением. Что касается срока службы оборудования, то многие профессионалы отмечают, что все зависит от интенсивности разгона. В более простом процессе, который не требует увеличения напряжения на микросхеме, он будет иметь почти незаметный эффект или вообще не иметь никакого эффекта. Нельзя забывать, что ни один производитель процессоров не советует разгонять систему, потому что такая практика считается высокой степенью риска и может нанести непоправимый вред.

Недостатки разгона в основном связаны с аппаратной структурой. Работа на уровнях, которые намного превышают рекомендованные разработчиками, может сократить срок службы компонентов, а повреждения, связанные с разгоном, как правило, не покрываются гарантиями производителей или дистрибьюторов. Кроме того, системы охлаждения, если они основаны на вентиляторах, могут создавать повышенный шумовой фон.

Позитив в этом процессе все же есть. Экстремальный разгон важен для лучшего понимания ограничений технологии. Производители должны учитывать этот процесс при разработке своих продуктов, тогда пользователи получат выгоду от надежных продуктов. Кроме того, результаты, полученные при разгоне, будут служить основой для нормальной работы компьютеров следующего поколения.

Увеличения напряжения

При разгоне ЦПУ путём повышения ускорения следует руководствоваться двумя правилами.

Первое – обеспечить достаточно эффективную вентиляцию.

Второе – напряжение не стоит повышать больше, чем на 0,3 В.

Порядок действий пользователя следующий:

  • Зайти в БИОС.
  • Найти раздел Power Bios Setup.
  • Перейти к пункту CPU Voltage Control.
  • Увеличить напряжение на 0,1 В.
  • Протестировать процессор с новыми значениями характеристик.
  • Если ЦПУ работает нормально, попробовать продолжить увеличение на 0,2, затем на 0,3 В.

Разгон памяти, против разгона ядер

Если при увеличении напряжения компьютер перезагрузился, значит, достигнуто максимальное значение, при котором возможна нормальная работа процессора. После этого следует вернуться к предыдущему значению вольтажа и завершить оверклокинг.

Источник https://pc-01.tech/ram-overcloc/

Источник https://lumpics.ru/what-affects-processor-clock-frequency/

Источник https://driverunpaid.ru/kompyutery/razgon-processora-intel.html

Источник

Leave a Comment

Ваш адрес email не будет опубликован.